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Abstract. Order-N tight-binding molecular dynamics has been implemented with a Fermi
operator expansion and applied to a low-density liquid carbon at a temperature above the melting
point of graphite. For various sets of the parameters introduced in the order-N approximation, the
radial distribution function and the mean square displacement are calculated. The conservation of
energy during a constant-energy simulation is studied.

1. Introduction

Tight-binding (TB) molecular dynamics (MD) is a useful tool for investigating dynamical
properties of clustering atoms and disordered materials. Since this method treats explicitly
electronic states of a system as well as atomic configurations, it is applied to a broad class of
materials to study dynamical properties of materials both at the microscopic and the electronic
levels. The TB-MD should be compared with an ab initio MD, in which every quantity
needed is calculated without free parameters. However, ab initio MD requires much larger
computational resources and therefore involves a limitation on both the system size and the
computational time. On the other hand a classical MD, in which much larger systems are
possible, is restricted to only atomic structures.

The TB method usually requires matrix diagonalization and therefore the calculational cost
is proportional to the cube of the system size (O(N3)). This explicit diagonalization restricts
consideration to only small systems again. To break through this bottleneck, various O(N)
schemes [1–5] have been proposed and microscopic accuracies have been investigated [1–6].
These O(N) schemes use a localization approximation in the target system. Qiu and co-
workers [7] improved the density matrix method [1] developed by Li et al and applied the
result to carbon systems. Stephan and Drabold [6] considered error estimations in detail for
the Fermi operator expansion method (FOEM) and applied it to a first-principles Hamiltonian
based on the local density approximation. Horsfield and co-workers [8, 9] implemented the
bond-order potential method and examined the degree of accuracy in MD simulations as well
as its parameter dependence. Horsfield and Bratkovsky [10] also investigated TB energies
and atomic forces for finite electronic temperatures using the extrapolated electronic energy.
Bowler et al [11] examined the accuracy and efficiency for several O(N) methods including
the FOEM.

0953-8984/00/081627+13$30.00 © 2000 IOP Publishing Ltd 1627
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The FOEM was originally developed to a usable level by Goedecker and co-workers [4,5].
Although it is not recommended as the best procedure for O(N) MD simulations of liquid
materials in the paper of Bowler et al [11], it has a very simple algorithm structure and turns
out to be suitable for making calculations with a massive parallel architecture.

In this paper an O(N) TB-MD, with the FOEM [5], is implemented and MD simulations
for a low-density liquid carbon are presented for various parameters introduced in the O(N)
approximation. We checked the accuracy of the conservation of energy to see the quality of
the simulations. A brief review of the FOEM is presented in section 2 and the algorithm in
section 3. Section 4 is devoted to results of simulations and discussion of the FOEM.

2. Fermi operator expansion

In the TB-MD, it is required to calculate the band energy, which is the sum of eigenvalues up
to the Fermi level with the weight of the Fermi distribution:

Etb = 2
∑
i

εif

(
εi − µ

	ε

)
(1)

where εi is the ith eigenvalue of the TB Hamiltonian H, f is the Fermi distribution function—
namely, f (y) = 1/(ey + 1)—and µ is the chemical potential. The latter is determined so as to
satisfy the charge neutrality. The factor 2 in (1) comes from spin degeneracy. The smearing
width of the Fermi level, 	ε, is interpreted in two ways. One is as a realistic electronic
temperature and the other is as an artifact introduced to stabilize the calculation. One possible
choice of	ε is to make it coincide with the physical temperature of the system. The derivative
of the band energy with respect to atomic coordinates contributes to the force acting on the
atoms, which is needed in MD simulation. The FOEM is briefly described only with the band
energy here. The argument holds for the derivatives.

Alternatively, the band energy can be expressed in terms of the trace with any basis sets:

Etb = 2 Tr [Hf (x)] (2)

where x = (H − µ)/	ε. With an orthogonal TB basis, {ϕ�α}, this is rewritten as

Etb = 2
∑
�α

∑
�′α′

〈ϕ�α|H|ϕ�′α′ 〉〈ϕ�′α′ |f (x)|ϕ�α〉 (3)

where ϕ�α specifies the αth atomic orbital of the �th atom. Matrix elements of the Fermi
operator f (x) are calculated directly using a polynomial expression for f (x). The Chebyshev
polynomial, {Tj }, is used as usual [5]:

f (x) = f [t] = c0

2
+

npl∑
j=1

cjTj (t) (4)

where t is rescaled from x with the following relation:

x ≡ xmax − xmin

2
t +

1

2
(xmax + xmin). (5)

xmax and xmin are the maximum and the minimum eigenvalues of x. Note that the eigenvalue
of t falls in the range between −1 and 1. The degree of the polynomial, npl, is chosen to be

npl = CW/	ε (6)

where W ∼ 2	εmax(xmax, |xmin|) and C is a constant. Note that W is interpreted as a
bandwidth of the electronic structure.
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The expansion coefficients are set with the following formula:

cj = 2

π

∫ 1

−1
f [p]Tj (p)

dp√
1 − p2

. (7)

In the practical implementation, we adopted xmin = −xmax and used the following expression
for the coefficients:

cj =




1 for j = 0

4

π

∫ p1

0

(
f [p] − 1

2

)
Tj (p)

dp√
1 − p2

− 4

π

sin(jθ1)

2j
for j = odd

0 otherwise

(8)

where p1 = cos(θ1) (0 � θ1 � π/2). To deduce this expression we have taken into account
the odd symmetry of f [p] − 1

2 and approximated f [p] − 1
2 as 1

2 for |p| � p1. Figure 1 shows
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Figure 1. Errors caused by truncation of the Chebyshev polynomial for (a)C = 1.0 andp1 = 0.45,
(b) C = 1.5 and p1 = 0.45, and (c) C = 1.5 and p1 = 1.0. The other parameters are xmax = 100,
	ε = 0.5 eV for all cases.
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typical errors introduced by the truncation of a Chebyshev polynomial for 	ε = 0.5 eV and
xmax = 100. In figures 1(a) and 1(b),C = 1.0 and 1.5 are used, respectively, andp1 = 0.45 for
both cases. It turns out that the averaged errors are about 7 × 10−5 and 2 × 10−5, respectively.
In figure 1(c), C = 1.5 and p1 = 1 are used. When p1 ∼ 1 the errors become obviously larger
than in the case shown in figure 1(b) and the averaged error is about 4 × 10−4. In the MD
simulations of the present work, p1 = 0.45 is used.

An important feature of the matrix elements of f (x) is that they decrease exponentially
as the distance between two orbitals increases [4,5]. This feature allows us to obtain an O(N)
algorithm by introducing a localization region (LR) associated with each atom. Outside the
LR, the amplitudes of the projected orbital defined by f (x)|ϕ�α〉 can be negligible. In the
double summation in (3), one loop runs through all orbitals and atoms and the other loop can
be truncated at the boundary of the LR. Denoting the averaged number of atoms in LRs asNLR

a
and the number of atomic orbitals on one atom asNorbit, the required amount of calculation on
evaluating the band energy is proportional toNNLR

a N2
orbitnpl. Indeed, the most time-consuming

part (at least 90%) of the present TB-MD simulation is calculating f (x)|ϕ�α〉, which mainly
consists of npl matrix–vector multiplications [5]. One scalar product in each matrix–vector
multiplication is proportional to the number of hoppings from a reference orbital to the orbitals
of neighbours.

The LR is usually determined from the number of atoms in the region, the number of
hoppings for the TB basis or the cut-off radius Rcut of the region. Because the latter procedure
is the simplest, we adopted it for liquid carbons. The other two procedures may have some
advantages in stabilizing the MD simulation in which the volume varies and in reducing the
number of TB bases in a LR without loss of accuracy of the calculations.

Figure 2 demonstrates an O(N) scaling of the algorithm in using the Fermi operator
expansion. Only the cpu time of the calculation for the band energy is plotted. It turns out that
the O(N) scaling is obviously observed over a few hundred atoms.
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Figure 2. O(N) scaling of the FOEM implemented. Only the cpu time of the calculation for the
band energy is shown. The straight line is a guide for the eyes.
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3. Molecular dynamics

In the TB-MD implemented, time evolutions of atoms are described by a Lagrangian:

L =
∑
i

1

2
mi ṙ

2
i − Epot[{ri}] − µ(Nele − 2 Tr[f (x)]) (9)

where

Epot = Etb + Eent + Erep (10)

Eent = −2	ε Tr[s(x)] (11)

s(x) = −{f (x) ln f (x) + (1 − f (x)) ln(1 − f (x))}. (12)

Nele is the number of total valence electrons, and Erep is the effective repulsive potential. The
last term of (9) is nothing but the constraint of charge neutrality. The entropic energy of
electrons associated with s(x) in (11) is also introduced. Including this term in the potential
energy Epot, the conservation energy can be defined:

Econs =
∑
i

1

2
mi ṙ

2
i + Epot + µ(Nele − 2 Tr[f (x)]). (13)

The last term on the right-hand side is added to a conventional definition [12] but it should
be vanishing when the charge neutrality is strictly satisfied. This definition gives us a smooth
evolution of the conservation energy.

The equations of motion are obtained from L in (9) as

mi

d2ri

dt2
= Fi (14)

Fi = −2 Tr

[
dH
dri

f (x)

]
− dErep

dri
. (15)

In the MD implementation these equations are integrated with the Verlet algorithm. Matrix
elements of s(x) are evaluated by the same way as for f (x) but with another set of expansion
coefficients associated with the Chebyshev polynomial. The error arising from fitting is usually
smaller by about one order of magnitude than that for f (x).

The computational scheme adopted here, in which the charge neutrality is fulfilled at each
MD step, is different from the scheme in [5], where the constant chemical potential and a
smearing width around the Fermi level are used. A similar scheme in which a finite electronic
temperature and an entropic energy are adopted was used with the diagonalization method
(DM) to study liquid carbons [12]. To impose the constraint of the charge neutrality, the
chemical potential is adjusted and, in doing this, a few iterations are usually needed in each
MD step. These iterations require more cpu time. By lowering the tolerance on the charge
neutrality, the number of iterations could be reduced. Some physical quantities, however, lose
their accuracy.

The parameters (Rcut, W , 	ε, and C) are introduced in the O(N) approximation. Two
cases, Rcut = 0.55 and 0.65 nm, are tested in the present work. Although these values are no
larger than those used in the previous works [5,6], the results of the present work also show a
good level of accuracy. W is determined from the bandwidth of the electronic structures in the
target system. A larger value of W gives stability of MD simulations, and perhaps accuracy
of the calculations as well. On the other hand, it should be as small as possible to reduce npl.

The smearing width 	ε is ideally taken in accordance with a physical temperature. For
much lower temperatures, however, the criterion for determining npl (see (6)) requires an
impractical resource of calculations. For this case the modified potential energy extrapolated
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to absolute zero may be efficient [10]. As a larger value of 	ε is taken, a smaller value of npl

is sufficient. In addition, if rapidly damped behaviours of f (x)|ϕ�α〉 are observed for larger
values of 	ε, Rcut could be reduced simultaneously [11]. The value of C is directly related
to the accuracy of the expansion and C = 1.5 results in a sufficient accuracy in the previous
works [10, 11].

The temporal pressure in the TB-MD scheme, as is the case for the classical MD with
atomic pair potentials, is represented by the form

P = 1

V

{
NkBT − 1

6

i �=j∑
i,j

Fi,j · (rj − ri )

}
(16)

where Fi,j is the contribution indicated by the j th atom to the force acting on the ith atom.
The relations Fi = ∑

j Fi,j and Fi,j + Fj,i = 0 are fulfilled. Note that the summation over j
is taken over atoms within the LR associated with the respective atom i.

4. Results

4.1. Outline of the simulations

In this section, the accuracy of physical quantities is examined for various parameter sets.
The tolerance on the charge neutrality 	Nele is also tested because this parameter governs the
number of inner iterations in every MD step. The parameter sets adopted in the present MD
simulations for the liquid carbon are summarized in table 1. The first part of the table is for
subsection 4.2 and the second for subsection 4.3. All MD simulations studied here with such
parameter sets are numbered as in table 1. When the DM is used, only 	ε and 	Nele are
shown in table 1. In the DM implemented, the #-point sampling is used. The TB parameters

Table 1. Summary of the parameter sets used in the present work. tspl specifies the interval time
of the data sampling.

Rcut 	ε 	Nele tspl

No N (nm) (eV) xmax npl (%) (ps)

001 64 — 0.6 — — 0.0025 4.0
002 64 0.55 0.6 50 250 1 4.0
003 64 0.55 0.75 50 200 1 3.0
004 64 0.55 1.0 50 150 1 4.0
005 64 — 0.0 — — — 5.0
006 512 0.55 1.0 50 150 1 3.4
007 512 0.55 0.6 50 250 0.1 3.0
008 64 0.55 0.5 100 200 0.1 7.0
009 64 0.55 0.5 100 300 0.1 4.0
010 64 0.65 0.5 100 200 0.1 4.4
011 64 — 0.5 — — 0.0025 6.0

012 64 0.65 0.5 100 300 0.001 —
013 64 0.65 0.5 100 200 0.001 —
014 64 0.55 0.5 100 300 0.001 —
015 64 0.55 0.5 100 200 0.001 —
016 64 0.55 0.5 100 300 0.01 —
017 64 0.55 0.5 100 200 0.01 —
018 64 — 0.5 — — 0.001 —
019 64 0.65 1.0 50 150 0.001 —
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developed by Xu et al [13] are used in the present work. Note that the scheme of the FOEM
without introducing localization reproduces the ground-state atomic configurations of small
carbon clusters Cn (n � 10) and fullerene C60. The maximum difference in bond length
between the FOEM and the DM (	ε = 0) is as small as 0.0015 nm when 	ε = 0.5 eV.

The density and temperature of the liquid carbon that we study here are 1.8 g cm−3 and
6000 K. The initial configurations are prepared as follows: a distorted diamond structure
at the same density was heated up to 10 000 K. After equilibration for 10 000 steps (1 ps),
the system was cooled down at a rate of 1 K/step (10 K fs−1). The temperature control is
achieved with a velocity scaling method. The relatively small time step 	t = 0.1 fs is used
in subsection 4.2 and 	t = 0.3 fs in the other simulations. For each parameter set, after more
than 0.7 ps of thermalization, the data for the MD simulations with the uniform interval of
about 1 fs were used to compute the radial distribution function (RDF) and the atomic mean
square displacement (MSD).

4.2. Structural and dynamical properties of liquid carbon

The RDF calculated by the FOEM reproduces well the result obtained by the DM. An example
of comparison between two methods is shown in figure 3 for Nos 1 and 2. Note that even such
a large 	Nele does not change the RDF significantly. The effects of a finite smearing width
are relatively small at about 	ε = 0.6 eV. The first peak in g(r) is sharpened very slightly
when 	ε = 0 (No 5). However, it turns out that a larger 	ε leads to obvious changes in g(r).
Figure 4 shows such effects of a finite 	ε on g(r) for larger 	εs. For the largest 	ε in the
figure, the first and second peaks are broadened and the first minimum is raised. As shown
in table 2, the ratios of variously coordinated atoms do not show remarkable differences for

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.1 0.2 0.3 0.4

G
(r

)

r [nm]

Figure 3. The radial distribution functions of liquid carbon at 1.8 g cm−3 and 6000 K obtained by
the FOEM (full line) and the DM (dotted line) with 	 = 0.6 eV.
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Figure 4. The dependence of the smearing width 	ε for the RDF. From simulations No 2 (left),
No 3 (centre), and No 4 (right).

Table 2. Ratios of variously coordinated atoms of liquid carbon at 1.8 g cm−3 and 6000 K.
The values with (without) parentheses are calculated with the diagonalization method (the Fermi
operator expansion). The averaged coordination number (nc) is also shown.

	ε Onefold Twofold Threefold Fourfold
Data No (eV) N (%) (%) (%) (%) nc

005 0.0 64 (8.4) (53.4) (35.6) (2.6) 2.3

008 0.5 64 9.3 55.1 33.5 1.9 2.3
011 64 (8.5) (53.8) (35.5) (2.1) 2.3

007 0.6 512 8.9 54.6 34.3 2.0 2.3
002 64 9.3 54.0 34.5 2.0 2.3
001 64 (8.4) (54.9) (34.4) (2.1) 2.3

006 1.0 512 13.2 55.6 28.7 1.6 2.2
004 64 13.3 56.1 28.1 1.4 2.2

the various 	εs used. For the largest 	ε, the number of onefold atoms increases and that of
threefold atoms decreases.

g(r) and the ratios of variously coordinated atoms agree with the previous result obtained
by the DM for the system size of 216 atoms at the same density and temperature [12]. Also note
that system size dependences of liquid carbons are not observed significantly for the quantities
such as the RDF, ratios of variously coordinated atoms, averaged pressure, and MSD.

The MSD is also calculated from each MD simulation. The typical time dependence of
the MSD is shown in figure 5. The linear behaviour characterizing a liquid state is observed
for all cases studied here. The self-diffusion constant (SDC) of the atoms D is estimated by
using the Einstein relation stating that 6D is equal to the slope of the linear part of the MSD.
The Ds obtained are summarized in table 3 with the averaged pressures and their fluctuations.
In this table, there is a tendency for a larger 	ε to result in a larger D. For the largest 	ε,
the pressure and D are increased by 65–75% from their minimum values in the table. For a
physical choice of 	ε (=0.5 eV), the data shown in table 3 are slightly scattered; this may
depend on the detail of parameter sets and the fluctuation caused by the small system size.
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Figure 5. The mean square displacement obtained by the FOEM (full line) and the DM (dotted
line) with 	ε = 0.5 eV.

Table 3. Averaged pressures P , fluctuations of pressure 	P , and self-diffusion constants D.
The values with (without) parentheses are calculated with the diagonalization method (the Fermi
operator expansion).

	ε P 	P D

Data No (eV) N (GPa) (GPa) (10−4 cm2 s−1)

005 0.0 64 (3.7) (4.7) (4.6)

008 0.5 64 4.1 4.6 5.8
009 64 4.0 4.4 5.6
010 64 4.3 4.7 5.0
011 64 (3.7) (4.8) (4.6)

007 0.6 512 4.3 1.6 5.7
002 64 4.2 4.5 5.1
001 64 (4.3) (4.5) (4.8)

006 1.0 512 5.9 1.4 8.1
004 64 6.0 4.0 7.5

For the simulations shown in table 3, which only require a moderate computational resource,
the D and the P obtained by FOEM usually give values larger by 10–20% than the values
obtained by the DM. If the system size dependence is also negligible for the DM, the result
of using the FOEM with a more accurate parameter set will approach the values obtained by
the DM. At the end of this section, by using the most accurate parameter set, we will obtain a
result very similar to that obtained by the DM.

4.3. The energy conservation

In O(N) approximations of the TB scheme, the conservation of energy during a constant-
energy MD simulation, which is an indicator of the quality of the MD simulation, is not highly
accurate. This is interpreted as showing that a good conservation of energy corresponds to a
good consistency between the potential energy and the atomic forces. In order to check the
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conservation of energies for various parameter sets, some MD runs were performed with a time
step 	t = 0.3 fs and small tolerances 	Nele, because a larger 	Nele gives a drastic energy
drift. Changing to a smaller time step, such as 	t = 0.1 fs, does not improve the energy
conservation. The time evolution of the energies with the most accurate parameter set that we
studied with 	ε = 0.5 eV (No 12) is shown in figure 6. The averaged temperature of the
system is about 6500 K. The conservation energy, Econs, shown at the top of figure 6 remains
almost constant at least for a few picoseconds, and no fatal energy drift is observed. Both drift
and fluctuation of the energy are sufficiently smaller than the fluctuations of the kinetic energy.
The middle and bottom curves in figure 6 show Epot − Eent and Epot, respectively. The time
variation of Eent is not remarkable, compared with that of the potential energy, which is easily
seen from the time dependences of the two energies in the figure.

-6.6
-6.4
-6.2
-6.0
-5.8
-5.6
-5.4

0 0.6 1.2 1.8

E
ne

rg
y 

[e
V

/a
to

m
]

time ( ps )

Energy conservation(No. 12)

Figure 6. The time evolution of the energetics for simulation of No 12. The top, middle, and bottom
curves show the conservation energy (Econs), the potential energy without the entropic energy of
the electrons (Epot − Eent), and the potential energy (Epot).

An energy drift is obviously observed for some parameter sets, corresponding to a low-
cost cpu time. When 	Nele = 0.1–1%, inner iterations are required for hardly any MD steps.
Requiring 	Nele = 0.001%, the number of inner iterations is three for all MD steps in the
present implementation. Therefore, of course, the latter is more time consuming than the
former. Rcut = 0.55 (0.65) nm corresponds to about 62 (104) atoms in a corresponding LR.
The required cpu time for one MD step for No 12 is about 7.5 times more than the cpu time
for No 8. Figure 7 shows the energy conservation for various parameter sets. In this figure,
large energy drifts begin to appear from 0.2 ps for No 17 and 1.1 ps for No 14. For simulations
No 15 and No 16, although no large energy drift is observed, relatively large-scale oscillations
begin from 1.2 and 1.1 ps, respectively. For a largerRcut, which is the case for No 11 or No 12,
no large energy drift is observed. Therefore, it turns out that the MD simulation is stable for
an Rcut as large as 0.65 nm.

The bottom curve in figure 7(a) is obtained from the simulation (No 19) in which the
parameters are at the same level as for that of No 12 except that 	ε = 1.0 eV. The energy
conservation is excellent in comparison with those for 	ε = 0.5 eV and the fluctuations
are very small. This indicates that the O(N) approximation is substantially improved when
	ε = 1.0 eV. Such remarkable improvement is considered to originate from a rapidly damped
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Figure 7. The energy conservation during the simulations for various parameters. Each number in
the figure specifies an MD run in table 1. The straight lines around −5.45 eV/atom in (a) and (b)
are obtained by the DM. The bottom line in (a), which is shifted upward by 0.5 eV/atom to show
it in the figure, is obtained with 	ε = 1.0 eV (No 19).

behaviour of the projected orbital f (x)|ϕ�α〉 at a larger	ε because the number of polynomials
is at the same level (same value of C) for both No 12 and No 19.

Before closing this section, let us point out the role of the system size in MD simulations.
Even if the system size dependence on averaged physical quantities, such as the RDF, averaged
pressure, and MSD, is not remarkable, it is important to note that a large system realizes a
higher statistical accuracy and a smaller statistical fluctuation in thermodynamical variables.
As seen in table 3, the 	P s are even larger than the P s for the 64-atom system. The time
evolution of temporal pressures is shown in figure 8 for both 512 and 4096 atoms. The initial
configuration of the latter system was constructed by replicating a system of 512 atoms and
giving random velocities according to the Maxwell distribution. By comparing the values of
	P for different system sizes, we obtained 4.6, 1.6, and 0.65 GPa for 64, 512, and 4096 atoms,
respectively. On increasing the system size N , the ratio 	P/P is suppressed in accordance
with a rate of 1/

√
N . A large system will result in more reliable thermodynamical properties

of such low-density (low-pressure) systems without much ambiguity in the statistical average.
Finally, we performed a simulation with the same level of parameters as for No 12,

considered as one of the most accurate parameter sets in the present work, by using the same
method as in section 4.2. The values obtained forP andD are 3.6 GPa and 4.6×10−4 cm2 s−1,
which are in good agreement with the values obtained by the DM.

5. Conclusions

The O(N) TB-MD is implemented with the FOEM. The various physical quantities (RDF,
ratio of coordinated atoms, pressure, MSD, and SDC) are computed from the simulations for
the liquid carbon (1.8 g cm−3, 6000 K), which were performed with different parameter sets
introduced in the O(N) approximation. The RDF obtained by the FOEM reproduces well
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Figure 8. The time evolution of temporal pressures for both 512-atom (dotted) and 4096-atom
(solid) systems.

the result obtained by the DM even when a relatively large tolerance on the charge neutrality
	Nele was used. The effects of the finite 	ε on physical quantities are observed remarkably
at 	ε = 1.0 eV. In comparison with the results obtained by the DM, the pressure P and the
self-diffusion constant D are obtained within 10–20% error by using a parameter set which
needs only a moderate computational resource. The most accurate parameter set that we have
studied here results in a good agreement with the result obtained by the DM. The energy
conservation in the constant-energy simulation was examined. It was found that the energy
conservation is stable for Rcut as large as 0.65 nm even when 	ε = 0.5 eV, and for a larger
	ε a better conservation was obtained. The system size dependence is not observed for the
RDF and SDC. A system as large as 4096 atoms makes fluctuations so remarkably small that
it gives rise to accurate thermodynamical properties for such low-pressured liquid carbon.

Acknowledgments

The authors would like to thank Dr F Shimizu for helpful discussion about parallel
computations, Dr H Shimizu for his help on the Workstation clusters, and Mrs H Miura
and M Arai for their help in initial parts of this work. The calculation in this work was
partially carried out using the facilities of the Supercomputer Centre, Institute for Solid State
Physics, University of Tokyo. The authors also acknowledge the computational resources made
available by the Centre for Promotion of Computational Science and Engineering (CCSE) of
the Japan Atomic Energy Research Institute (JAERI). One of the authors (TO) would like to
express thanks for financial support from a Grant-in-Aid for Scientific Research provided by
the Ministry of Education, Science, Sports, and Culture, Japan. One of the authors (YH) would
like to thank the JST for partial financial support.

References

[1] Li X-P, Nunes R W and Vanderbilt D 1993 Phys. Rev. B 47 10 891
[2] Ordejo’n P, Drabold D A, Grumbach M P and Martine R M 1993 Phys. Rev. B 48 14 646



Order-N tight-binding molecular dynamics simulation 1639

[3] Mauri F and Galli G 1994 Phys. Rev. B 50 4316
[4] Goedecker S and Colombo L 1994 Phys. Rev. Lett. 73 122
[5] Goedecker S and Teter M 1995 Phys. Rev. B 51 9455
[6] Stephan U and Drabold D A 1998 Phys. Rev. B 57 6391
[7] Qiu S-Y, Wang C Z, Ho K M and Chan C T 1994 J. Phys.: Condens. Matter 6 9153
[8] Horsfield A P, Bratkovsky A M, Pettifor D G and Aoki M 1996 Phys. Rev. B 53 1656
[9] Horsfield A P, Bratkovsky A M, Fearn M, Pettifor D G and Aoki M 1996 Phys. Rev. B 53 12 694

[10] Horsfield A P and Bratkovsky A M 1996 Phys. Rev. B 53 15 381
[11] Bowler D R, Aoki M, Goringe C M, Horsfield A P and Pettifor D G 1997 Modell. Simul. Mater. Sci. Eng. 5 199
[12] Morris J R, Wang C Z and Ho K M 1995 Phys. Rev. B 52 4138
[13] Xu C H, Wang C Z, Chan C T and Ho K M 1922 J. Phys.: Condens. Matter 4 6047


